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Abstract

In many numerical programs there is a need for a high-quality floating-point
approximation of useful functions f , such as exp, sin, erf . In the actual imple-
mentation, the function is replaced by a polynomial p, leading to an approxi-
mation error (absolute or relative) ε = p−f or ε = p/f−1. The tight yet certain
bounding of this error is an important step towards safe implementations.
The main difficulty of this problem is due to the fact that this approximation
error is very small and the difference p − f is highly cancellating. In conse-
quence, previous approaches for computing the supremum norm in this de-
generate case, have proven to be either unsafe, not sufficiently tight or too
tedious in manual work.
We present a safe and fast algorithm that computes a tight lower and upper
bound for the supremum norms of approximation errors. The algorithm is
based on a combination of several techniques, including enhanced interval
arithmetic, automatic differentiation and isolation of the roots of a polynomial.
We have implemented our algorithm and timings on several examples are
given.

Keywords: supremum norm, approximation error, certified computation, elementary
function, interval arithmetic, automatic differentiation, roots isolation technique.

Résumé

Beaucoup d’applications numériques nécessitent le calcul précis d’approxi-
mations en virgule flottante de fonctions f telles que exp, sin, erf . En pra-
tique, dans l’implantation, la fonction est remplacée par un polynôme p, ce
qui conduit à une erreur d’approximation (absolue ou relative) ε = p − f ou
ε = p/f − 1. La majoration fine et néanmoins sûre de cette erreur est une étape
importante lorsqu’on vise une implantation certifiée.
La principale difficulté de ce problème vient du fait que l’erreur d’approxima-
tion est très petite et est calculée par une différence p − f qui cancelle énor-
mément. Les précédentes approches pour calculer des normes sup sont donc
insuffisantes dans ce cas bien précis : ou bien elles n’offrent pas la garantie de
sécurité du résultat, ou bien elles donnent des majorations trop grossières, ou
enfin elles nécessitent trop de travail manuel au cas par cas.
Nous présentons un algorithme sûr et rapide pour calculer une minoration
et une majoration fine de la norme sup d’erreurs d’approximation. L’algo-
rithme s’appuie sur la combinaison de différentes techniques existantes, en
particulier une arithmétique d’intervalle perfectionnée, de la différentiation
automatique et l’isolation fine des racines d’un polynôme. Nous avons implé-
menté notre algorithme et nous donnons les temps d’exécution sur plusieurs
exemples.

Mots-clés: norme sup, erreur d’approximation, calcul certifié, fonctions élémentaires,
arithmétique d’intervalle, différentiation automatique, technique d’isolation de zéros.
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1 Introduction

Many numerical programs require computing approximated values of mathematical functions
such as exp, sin, arccos, erf , etc. These functions are usually implemented in libraries called
libm. Such libraries are available on most systems and many numerical programs depend on
them. Examples of such libms include CRlibm, the glibc, libmcr offered by SUN, and Intel’s
MKL.

In general, these libms offer no guarantee on the quality of the computed results. In order
to allow for a better portability and a better numerical quality of programs, the revised IEEE 754-
2008 standard [15] recommends that the functions provided according to the standard be cor-
rectly rounded. Assuming round-to-nearest mode, this means that, if a function f is provided,
the function code must always return the floating-point number that is the closest to the exact
value f(x).

In order to guarantee such a property, one has to be particularly careful when developing
the library. It can be shown [19] that for a large class of functions it is sufficient to compute an
approximation y of f(x) accurate enough and then to round y to the target format. Moreover,
using properties of the function (such as exp(2x) = exp(x)2 for instance) it is possible to perform
a so-called range reduction so that we need to approximate f on a small closed interval [a, b] only.

For computing the approximation y, a polynomial p may be used. One must then prove that
for each point x ∈ [a, b], the error between p(x) and f(x) is small enough: ∀x ∈ [a, b], |ε(x)| ≤ µ
where µ is the target approximation quality and ε is the approximation error defined by

ε(x) =
p(x)

f(x)
− 1 or ε(x) = p(x)− f(x)

depending on whether the relative or absolute error is considered.
In other words, we want to prove that ‖ε‖∞ ≤ µ. Here, ‖ε‖∞ denotes the infinity or supre-

mum norm, defined by ‖ε‖∞ = supx∈[a, b]{|ε(x)|}.
A simple numerical computation of the norm is not satisfying: guaranteeing correct rounding

means guaranteeing a precise mathematical property and this requires proving each assertion.
We will address here the problem of computing a certified bound for the supremum norm of an
approximation error: given p and f , find an interval r (as thin as desired) such that ‖ε‖∞ ∈ r.

By certified, we want to express the fact that the correctness of the algorithm must be proven.
Thus, if there are no bugs in the implementation, the result given by the algorithm can be trusted.

In order to protect oneself from programming errors, one might want to compute, in the
same time as r, a certificate that can formally be checked using a proof assistant such as COQ [2]
or PVS [26]. We do currently not compute such a certificate. In this article we will not address
that point, that we consider to be future work.

This article presents a certified algorithm for computing the supremum norm of an approxi-
mation error. The function f involved in the approximation error is supposed to be differentiable
up to a sufficient order n on the interval [a, b]. In Section 2, we briefly provide a general view
of previous approaches for solving this question and we show why they seem inappropriate for
the particular problem we address herein. In Sections 3.1 and 3.2, we first recall some classical
techniques necessary for understanding our algorithm. Subsequently, in Section 3.3 we explain
our algorithm. Finally, in Section 4, we present our implementation and we show experimental
results.

2 Previous work

2.1 Interval Arithmetic

The idea of using interval arithmetic for obtaining guarantees on a numerical result, for encom-
passing finiteness, round-off errors and uncertainty is well established in the literature, e.g. [22], [16] [24].
It is a classical way of performing validated computations with floating-point arithmetic. The
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fundamental principle consists in replacing each number by an enclosing interval. In the frame-
work of interval arithmetic, we define an interval x as a pair x = [x, x] consisting of two numbers
x and xwith x ≤ x. A real number x ∈ R is contained in an interval x, i.e., x ∈ x, iff x ≤ x ≤ x. An
interval may contain only one real number (i.e. it has zero width) and is denoted by x = [x, x],
where x is the unique point it contains. In this case we say that x is a point or degenerated in-
terval. We define the midpoint of the interval x, defined as: mid (x) = (x+x)/2. The width of an
interval is x− x. Moreover, we denote by ϕ(x) = {ϕ(x)|x ∈ x} the exact image of the function ϕ
over the interval x.

The elementary arithmetic operations, as well as the elementary functions can be straightfor-
wardly extended to handle intervals [22], [16], [24].

Although defining the interval arithmetic operations on real numbers proves to be straight-
forward, one has to take into account that the endpoints x and x of an interval x might not be
representable on a given computer. For instance, the interval [1/3, 2/3] cannot be represented ex-
actly using floating-point numbers. In such a case outward rounding, possibly in multiprecision
arithmetic, is performed [10]. The MPFI library∗ provides such a multiprecision interval arith-
metic: when performing an operation, the user chooses the precision used for representing the
bounds of the result. The precision may be arbitrarily high. Consequently, [1/3, 2/3] for instance is
replaced by an enclosing interval [u, v] where u ≤ 1/3, 2/3 ≤ v and u and v can be arbitrarily close
to the exact values 1/3 and 2/3.

One fundamental use of interval arithmetic is bounding the image of a function over an inter-
val. However, it is very well known that interval calculations generally overestimate the image
of a function, phenomenon known under the name of “interval blow-up” [25]. This phenomenon
is in general proportional to the width of the interval, and thus we are interested in using thin
intervals for obtaining a reasonably tight bounding of the function image.

In particular, when evaluating a function ϕ over a point interval x = [x, x], the interval enclo-
sure of ϕ(x) can be made arbitrarily tight by increasing the precision used for evaluation until a
satisfactory tightness is obtained. This implies that unless the value of ϕ(x) is zero, the sign of
ϕ(x) can always be safely determined.

When evaluating functions over non-degenerated intervals, the algorithm presented in [6]
can be used. This algorithm is based on a Taylor expansion of order 1 and allows for obtaining
a smaller overestimation of the range of a function. This leads to results of superior quality
compared to the usage of straightforward interval arithmetic. Another useful feature of this
algorithm is that it is able to overcome removable singularities of functions using a heuristic
based on L’Hôpital’s rule. For example, the algorithm returns a bounded interval for enclosing
the image of the function x 7→ sin(x)/x over an interval that contains 0; straightforward interval
arithmetic would divide by zero and return [−∞, +∞] as a bound.

2.2 Previous solutions to a specific problem

Bounding the supremum norm ‖ε‖∞ of an approximation error ε = p/f − 1 (or ε = p− f ) can be
viewed as a global optimization problem [11].

There are efficient floating-point techniques for finding the global extremum of a function
(see [3] for instance). These techniques consist in numerically finding a point x that is very close
to a point x⋆ where the extremum of ε is reached. An approximate value of the extremum ε(x⋆)
is given by ε(x). Consequently these techniques generally underestimate the supremum norm.
Algorithms implemented in software tools like Maple and Matlab typically suffer from this is-
sue [6]. The particular difficulty of the problem we address here is to find a value that is surely
an upper-bound of the actual value ‖ε‖∞.

The problem of finding a safe enclosure of the global optimum of a function has been stud-
ied [16, Chap.4], [21, Chap.1,2], [11]. However, the proposed algorithms are not suitable for the
case of an approximation error. Indeed, the function ε is obtained by a subtraction between p
and f . Since p approximates very well the function f , the leading bits of both components of the

∗distributed under the LGPL and available at http://gforge.inria.fr/projects/mpfi/

http://gforge.inria.fr/projects/mpfi/
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subtraction cancel out. An arithmetic with arbitrary precision may reduce this phenomenon but
it does not suppress it. This leads to very loose resulting interval bounds. For instance, GlobSol
[17] does not go beyond double precision in its interval arithmetic library and is not tailored for
such a specific problem.

There are approaches for this specific problem. In order to avoid the phenomenon of cancel-
lation, they use a high order Taylor expansion T of the function ε. This way, the cancellations
appear when computing the coefficients of the expansion and not when evaluating the approxi-
mation error function itself. Afterwards, a triangular inequality is used for upper-bounding the
supremum norm of the approximation error: ‖ε‖∞ ≤ ‖T‖∞ + ‖ε− T‖∞. Two key problems oc-
cur: there is a need for a tight bounding of ‖T‖∞ as well as for the Taylor remainder ‖ε− T‖∞.
Krämer used this approach and interval arithmetic in the development of the FI_LIB library [18].
However, his method has the disadvantage that no formal proof is produced, the results are not
very tight if they come near the machine precision [14] and the remainder bound is computed
manually.

Harrison also used the idea of working with a Taylor expansion of ε. He tightly bounds the
supremum norm of the polynomial ‖T‖∞ using a Sum of Squares (SOS) decomposition algo-
rithm [13]. Usually the SOS algorithms are either very slow or they present numerical prob-
lems [13, Section 7]. The particular SOS algorithm presented in [13] solves some of these issues.
The approach allows for verifying the results in HOL [12]. Nevertheless, the second problem of
automatically bounding the Taylor remainder is not addressed.

In order to be able to bound the Taylor remainder automatically, solutions based on Taylor
models have been proposed [7, 23]. Current implementations like COSY-INFINITY† are either
limited to double precision or do not seem to offer the required safety. In particular, the Taylor
remainder bounds are analyzed by hand [29]. Taylor models checked by formal tools like PVS
may require expensive computations [7].

Chevillard and Lauter proposed an algorithm for computing the supremum norm of an ap-
proximation error that has the advantage of offering a safe and automatically validated result [6].
They assume that the function ε is at least twice continuously differentiable on the considered
interval. They formally differentiate ε and look for the zeros of ε′. All zeros xi of this derivative
are enclosed by intervals xi, such that the diameters of xi are less than a predefined small bound
d, which is a parameter of their algorithm. These tight intervals can be computed by dichotomy
or with interval Newton iteration. Then the function ε is evaluated on each interval xi using the
algorithm mentioned in Section 2.1. The resulting inner and outer enclosures [6] are combined to
obtain an interval enclosure of ‖ε‖∞ over [a, b]. However, when the degree of the approximation
polynomial p is greater than 10, the problem of bounding the supremum norm ‖ε‖∞ generally
becomes unfeasible because of the computation time.

3 A polynomial-based approach

3.1 Some techniques derived from automatic differentiation

Given a function τ defined on an interval [a, b] and a real number θ, we want to automatically
compute a polynomial T such that ‖T − τ‖∞ ≤ θ. In practice, τ is given as an expression tree that
represents the function. For T , we might take a Taylor expansion of τ with a well-chosen order
n− 1, or we may try to be more clever, e.g. by using an interpolation polynomial of degree n− 1
(see Section 3.3.3).

In both cases, denoting by τ (i) the i-th derivative of τ , we need to bound the ratio τ
(n)
/n!

on [a, b] automatically in order to ensure that ‖T − τ‖∞ ≤ θ (see Section 3.3.3). Moreover, if we
choose to use a Taylor expansion, we need to compute it, which implies to compute τ

(i)
/i! for each

integer i ∈ {0, . . . , n− 1}.
The naive approach consists in formally differentiating function τ n times and evaluating

the expression obtained this way. This is utterly inefficient, in particular because the size of the

†http://bt.pa.msu.edu/index.htm

http://bt.pa.msu.edu/index.htm


4 S. Chevillard, M. Joldes, Ch. Lauter

expressions grows too fast with the order of derivation.
Automatic differentiation is a technique that makes it possible to evaluate the derivative of a

numerical function at some point, without having to formally differentiate it. Most of the time,
this technique is described as a code transformation process: given the source code of a pro-
gram that computes a numerical function, it deduces a program that computes the derivative. In
general the considered functions have several variables.

Some authors have focused more precisely on the problem of efficiently computing the coef-
ficients of the Taylor expansion of a univariate function [1], [23]. This is done again by a code
transformation process (given a program computing a function, deduce the expansion of this
function). There is no difficulty in adapting these techniques for working with expressions in-
stead of code.

The main idea is the following. We want to compute the first n derivatives of τ in a given
point x0. So, we are not interested in knowing the expressions of the successive derivatives. All
we need is given by an array of n + 1 numbers: the array [τ0, . . . , τn] where τi = τ(i)(x0)/i!. So,
instead of working with expressions, we will work with arrays of n + 1 numbers. This is much
more convenient in terms of memory usage.

Basically, automatic differentiation consists in doing the same operations that would be done
when evaluating the expression of the derivative, but without effectively writing the expression
of the derivative. Consider for instance the addition of two functions u and v (supposed to be n
times differentiable). If [u0, . . . , un] and [v0, . . . , vn] are given, the array for the function u+ v is
simply given by (u+ v)i = ui + vi.

The same way, using Leibniz’ formula, it is easy to see that

(u · v)i =

i
∑

k=0

uk · vi−k.

Formulas for exp(u), cos(u), etc. may also be written. The interested reader will find in [9,
Chap. 10] or [1] a complete introduction to this domain.

More generally, it is possible to write a recursive procedure that computes (u ◦ v)i from the
(vk) computed in x0 and the (uk) computed in v(x0). This allows one to efficiently compute the
first n derivatives of any function τ given by an expression.

Besides, these procedures may be used with interval arithmetic: if x0 is replaced by an inter-
val x, and if the procedures are applied with interval arithmetic, the result is an interval τ i that
encloses the scaled image τ

(i)(x)/i! of the i-th derivative of τ on the interval x. In the following,
we denote by AutoDiff(τ,n,x) a procedure that returns an array [τx

0, τ
x
1, . . . , ..., τ

x
n], where

τ (i)(x)

i!
⊆ τx

i .

Notice that by applying this to the interval x = [x0, x0] and using a multiprecision interval
arithmetic, we obtain a safe enclosure of τ

(i)(x0)/i! that can be made as accurate as desired. This
will be useful for safely computing the Taylor coefficients of τ .

3.2 Isolation of roots of polynomials

Given a univariate real polynomial, we now want to compute thin isolating intervals for all of its
real roots. These intervals should be disjoint and each interval should contain exactly one root.
There are two main classes of methods for isolating the real roots of univariate polynomials.

On one hand we have the methods based on “Descartes’ rule of signs”, which upper-bounds
the number of positive real roots of a polynomial by the number of sign changes in its coeffi-
cients. Descartes based strategies are well developed in the literature (see [28], [8, Chap. 5]).
Roughly speaking, the algorithm is based on bounding the number of positive real roots by the
sign changes in the coefficients of the polynomial. This bounding criterion can efficiently be ap-
plied for isolating the roots of a polynomial on the interval ]0, 1]. For that purpose elementary
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transformations of the initial polynomial (like translation, homothety, reversal) are used. Fur-
thermore, a strategy of successively bisecting the search interval is employed.

Although the computation of the number of roots in an interval is replaced by an upper-
bound, we have the guarantee that this algorithm ends if the width of the search interval is
sufficiently small (cf. Vincent’s Theorem [28]).

On the other hand, another class of algorithms for isolating the real roots of a polynomial are
the algorithms based on Sturm method (see [4] for an overview of these methods). Specifically,
the exact number of distinct real roots is computed using an algorithm based on counting the
sign changes in the Sturm sequence. Sturm method offers the advantage of an exact number of
roots compared to Descartes’ approach which gives an upper-bound for the number of roots.

For isolating and then refining the bounding of the roots, both classes of algorithms use a
dichotomic approach [28], and/or a variant of Newton’s iteration process [8, Chap. 5].

However, the computation of the Sturm polynomials poses more numerical problems [4] and
has a higher complexity compared to Descartes based process [27]. Descartes’ method requests
the precondition that the polynomial should be square-free. In general, this condition can be in-
sured by computing the greatest common divisor between the polynomial and its first derivative,
which might prove as hard as computing the Sturm sequence, unless techniques based on mod-
ular arithmetic (computations of gcd mod p where p belongs to a well chosen family of primes)
are used.

According to [28], isolating the roots of polynomials can be done faster and safely using a hy-
brid algorithm based on the Descartes’ method and interval arithmetic. In fact, in that algorithm,
each coefficient of the polynomial is replaced by a tight interval that encloses it. Consequently,
this yields to a decrease in the average bit size of the coefficients and thus to the cost of arithmetic
operations.

3.3 Fast and certified bounding of the zeros of a derivative

3.3.1 Reducing absolute and relative error terms to polynomials

For computing the supremum norm of the approximation error ε, we use the same general idea
as the one developed in [6]: we localize as accurately as possible the zeros of ε′. Actually, we
know that if x is an extremum of ε over [a, b], then x = a or x = b or ε′(x) = 0.

Hence we want to compute a list of arbitrarily small intervals Z , such that we are sure that
every zero of ε′ lies in one of the intervals z. Furthermore we just have to evaluate ε by means of
interval arithmetic on each z for obtaining a safe enclosure of the extrema.

Let us remark that some z may possibly contain several zeros of ε′. Likewise some z may not
contain any zero of ε′. What is important here is that each zero of ε′ actually lies in one of the
z’s and that the intervals z are thin enough for the interval evaluation of ε on z to be an accurate
upper-bound of the exact image interval ε(z).

In the case of the absolute error ε = p− f , so ε′ = p′ − f ′. Let τ = p′ − f ′.
The case of the relative error ε = p/f − 1 is more tricky. It holds that ε′ = (p′f−f ′p)/f2. A

problemwill occur if f has a zero in [a, b]. As amatter of fact, εmay bewell-defined and infinitely
differentiable, although the function f vanishes at some point z. This happens when p also has a
zero in z.

We face a problem when it comes to compute the Taylor expansion of ε′: it requires a division
by f2. Straightforward interval arithmetic ignores the fact that p and f vanish simultaneously and
returns something like [−∞, +∞]. In [6] a method based on L’Hôpital’s rule has been proposed
that makes it possible to evaluate such a division by interval arithmetic andwith a relevant result.
However, this method supposes that the function being evaluated is given by an expression. This
cannot be used here, since automatic differentiation precisely avoids using expressions.

In consequence, in the case of the relative error, we define τ by τ = p′f − f ′p. Thus, each zero
of ε′ is also a zero of τ . The reciprocal is not true: we may have introduced new zeros. Anyway,
there is no harm in having these superfluous zeros, if the intervals z in which they are enclosed
are thin enough.
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How can we make sure that we bound every zero of τ without forgetting any? We reduce the
problem to the polynomial case. This case is easy to solve as we saw it in Section 3.2. For this
purpose, suppose that we know a polynomial T that approximates τ with a remainder bounded
by θ: ∀x ∈ [a, b], |τ(x)−T (x)| ≤ θ. We will see in Section 3.3.3 howwe can compute such a couple
(T, θ). Of course, θ is chosen to be small with respect to ‖ε‖∞. The smaller θ will be, the thinner
the enclosure of the zeros of τ will be.

3.3.2 Tight bounding of the zeros of a function

We have reduced the initial problem to the following one: let τ be a function defined on an
interval [a, b]. We suppose that τ is approximated by a polynomial T with a remainder bounded
in magnitude by θ. We want to compute a list Z that contains intervals z (of arbitrarily small
width) such that

∀z ∈ [a, b], τ(z) = 0 =⇒ ∃ z ∈ Z, z ∈ z.

Remark that τ(z) = 0 implies that |T (z)| ≤ θ. Thus, it suffices to find the points z ∈ [a, b] such
that T (z) is included in the strip delimited by −θ and θ (see Figure 1). Formally, we look for the
points z such that both T (z) ≤ θ and T (z) ≥ −θ hold.

Suppose for a moment we could compute a list Lu of intervals representing the points where
T is below θ. The same way, let Lℓ be a list of intervals representing the points where T is
above −θ. It is clear that out of both lists we can compute intervals zi for which T is in the strip
delimited by −θ and θ. Indeed it suffices to intersect the intervals in Lu and Lℓ (see Figure 1).
Formally we have

Z =

(

⋃

r∈Lu

r

)

⋂

(

⋃

s∈Lℓ

s

)

.

Figure 1: How to compute Z

Actually the list Lu can be computed with the following technique, that also applies for Lℓ.
Lu represents the set of points x where T (x) ≤ θ, i.e. T (x) − θ ≤ 0. T − θ is a polynomial:

hence it has a finite number of roots in the interval [a, b]. Moreover, the areas where T − θ ≤ 0
are delimited by the zeros of T − θ. Thus, it suffices to find the zeros of T − θ and look at its sign
on the left and on the right of each zero, in order to know where T − θ is positive and where it is
negative.

Since we want certified results, we must be rigorous. We use a technique of root isolation for
polynomials (Section 3.2). It returns the list Zu = {z1, · · · , zk} of the roots of T − θ (the zis are in
fact thin enclosing intervals).

For each z ∈ Zu we must determine the sign of T − θ at z and at z. For this purpose we com-
pute by interval arithmetic (T − θ)([z, z]) (we do the same for z). Since [z, z] is degenerated, we
can make the resulting interval as tight as we want by increasing the precision (see Section 2.1).
In particular, we eventually determine the sign of (T − θ)(z) with safety.

The list Lu is then easy to obtain. If zi is a zero characterized by the signs (+, −), it means that
T−θ becomes negative after zi. It becomes positive again with the first following zj characterized
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Figure 2: How to compute Lu

by the signs (−, +). Consequently we add [zi, zj] to the list Lu. A special rule applies for the first
and the last zero. This is illustrated in Figure 2.

3.3.3 Certified computation of approximating polynomials

Taylor expansions with a certified remainder Let n ∈ N. Any n times differentiable function τ
over an interval [a, b] around x0 can be written as

τ(x) =

n−1
∑

i=0

τ (i)(x0)

i!
· (x− x0)i + ∆n(x, ξ),

where ∆n(x, ξ) =
τ (n)(ξ)(x− x0)n

n!
, x ∈ [a, b] and ξ lies strictly between x and x0.

We face two problems. First we need to bound the remainder ∆n(x, ξ). This bound does not
need to be tight: it suffices that we prove it to be small enough. The second problem comes from
the fact that the coefficients ci = τ(i)(x0)/i! of the Taylor polynomial are not exactly computable.
Thus, we need to bound tightly the difference between the polynomial we compute and the actual
Taylor polynomial.

a) It is easy to bound the term (x − x0)i, where x, x0 ∈ [a, b] and i ∈ {0, ..., n}. Let xi be an
enclosing interval: (x− x0)i ∈ xi.

b) Bounding ∆n(x, ξ). We compute an interval enclosure

τ
[a,b]
n ∋

τ (n)(ξ)

n!
, where ξ ∈ [a, b]

calling AutoDiff(τ,n,[a, b]). Let ∆ = τ
[a,b]
n · xn

Thus, ∆n(x, ξ) ∈∆.

c) Enclosing the coefficients ci, i ∈ {0, ..., n − 1}. We obtain interval enclosures ci ∋ ci by
calling AutoDiff(τ,n− 1,[x0, x0]).
Moreover, the resulting intervals ci can be made arbitrarily tight by increasing the precision
of the interval arithmetic since the automatic differentiation process is applied on a point
interval (see Section 2.1).

d) Computation of the approximation polynomial. Consider ti = mid (ci) and the polynomial
T (x) of degree n− 1,

T (x) =

n−1
∑

i=0

ti(x− x0)i.
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The difference between T and the actual Taylor polynomial can be easily bounded using in-
terval arithmetic. We have ci ∈ ci, and thus (ci − ti) ∈ [ci − ti, ci − ti], which leads to

n−1
∑

i=0

(ci − ti)(x− x0)i ∈
n−1
∑

i=0

[ci − ti, ci − ti] · xi = δ.

Finally, the error between the function τ and its approximation polynomial T is bounded
by δ + ∆:

∀x ∈ [a, b], τ(x)− T (x) ∈ δ + ∆.

Let θ ∈ R
+ minimal such that δ + ∆ ⊆ [−θ, θ]. Thus, ∀x ∈ [a, b], |τ(x)− T (x)| ≤ θ.

Chebyshev approximations for a tighter remainder As we have seen, a Taylor polynomial is
an approximation to τ that is easy to compute. Moreover, we know how to safely bound the
remainder. However, the Taylor polynomial of a given degree is in general a poor approximation
to the function among other polynomials of the same degree. In particular, as the domain [a, b]
grows, this technique may require a very high order. To solve this issue, the domain [a, b] might
be cut into smaller intervals on which the algorithm is applied.

Another idea (that does not exclude the other solution) is to replace Taylor polynomials by
polynomials with a better approximation quality and for which we also know an explicit bound
of the remainder. A natural idea is to choose a polynomial that interpolates τ . It is possible to
effectively bound the remainder of such a polynomial [5, Chap. 3]. Chebyshev points

cos

(

π(k + 1/2)

n+ 1

)

·
b− a

2
+
a+ b

2
, (k = 0, . . . , n)

form a classical choice of interpolation points and offer in general a very good quality of approx-
imation [5].

In order to use such polynomials, there are some issues to solve. We did not implement this
technique yet and technical details are still future work.

4 Experimental results

We have implemented a prototype of the method using the Sollya software tool‡. This prototype
is available on request and will be distributed as a free software. Our prototype includes an
implementation of automatic differentiation in interval arithmetic with arbitrary precision. For
isolating the roots of polynomials, we currently use an algorithm that uses interval arithmetic
and based on Sturm’s method. For comparison purpose, we plan to implement an algorithm
based on Descartes’ rule of sign in a close future.

Our algorithm takes in input a function f , a polynomial p, an interval [a, b] and an argument
that indicates if the relative or absolute error is to be considered. Moreover, our algorithm relies
on two parameters: the precision prec used in the interval arithmetic and the maximal error θ
allowed for the higher order polynomial approximation. We currently use a Taylor polynomial.

We set τ = p′−f ′ or τ = p′ ·f −f ′ ·p as explained in Section 3.3.1. This step currently requires
a formal differentiation of p and f . We plan to use automatic differentiation here as well in the
future.

We begin by heuristically finding an order n − 1 such that the Taylor polynomial T obtained
by automatic differentiation (see Section 3.3.3) has a remainder bounded by θ. Then we enclose
the zeros of τ using the polynomial T , as explained in Section 3.3.2. This gives us a list of intervals
Z to which we add [a, a] and [b, b]. Thus the list contains every possible extremum of τ .

Finally, we evaluate the approximation error p − f or p/f − 1 (using interval arithmetic) for
each interval of Z . We combine the resulting intervals and obtain an enclosure of ‖ε‖∞.

‡available at http://sollya.gforge.inria.fr

http://sollya.gforge.inria.fr
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Example f [a, b] deg(p) mode deg(T ) quality time
#1 exp(x)− 1 [−0.25, 0.25] 5 relative 11 37.6 0.4 s
#2 log2(1 + x) [−2−9, 2−9] 7 relative 23 83.3 2.2 s
#3 arcsin(x+m) [a3, b3] 22 relative 37 15.9 5.1 s
#4 cos(x) [−0.5, 0.25] 15 relative 28 19.5 2.2 s
#5 exp(x) [−0.125, 0.125] 25 relative 41 42.3 7.8 s
#6 sin(x) [−0.5, 0.5] 9 absolute 14 21.5 0.5 s
#7 exp(cos(x)2 + 1) [1, 2] 15 relative 60 25.5 11.0 s
#8 tan(x) [0.25, 0.5] 10 relative 21 26.0 1.1 s
#9 x2.5 [1, 2] 7 relative 26 15.5 1.4 s

Table 1: Results of our algorithm on several examples

In Table 1 we present nine examples of various situations. Experiments were made on an Intel
Pentium D 3.00 GHz with a 2 GB RAM running GNU/Linux and compiling with gcc. The two
first examples are those presented in [6]. The authors say that the second example is handled in
about 320 seconds on a 2.5 GHz Intel Pentium 4. Thus our algorithm has a speed-up factor of
about 120 compared to their algorithm.

The third example is a polynomial taken from the source code of CRlibm§. In this example,

m = 770422123864867 · 2−50,
a3 = −205674681606191 · 2−53,
b3 = 205674681606835 · 2−53.

This is typically the kind of problems that developers of libms address. The degree of p is 22,
which is quite high in this domain. Our algorithm only needs 5 seconds to handle it.

In the examples 4 to 9, the polynomial p is the minimax, i.e. the polynomial of a given degree
that minimizes the supremum norm of the error. These examples involve more or less compli-
cated functions on intervals of various width. Examples 7 and 9 should be considered as quite
hard for our algorithm since the interval [a, b] has width 1: this is large when using Taylor poly-
nomials and it requires a high degree. All examples are handled in less than 15 seconds. This is
reasonable for a computation that is made once, when implementing a function in a libm. Most
of our examples cannot be handled with a global optimization software like GlobSol because
arbitrary precision is intrinsically needed for avoiding the cancellations effects.

For each example presented in Table 1, we give the computation time and the quality of the
computed bound. More precisely, if the algorithm computes a bound [ℓ, u], the quality of the
result is− log2((u−ℓ)/ℓ). It indicates roughly the accuracy (in bits) given when considering u as an
approximated value of ‖ε‖∞. Accuracy specifications, as for correct rounding, generally simply
ask for knowing the order of magnitude of the error. Knowing about 15 significant bits is hence
quite accurate.

5 Conclusion and future work

Bounding the approximation error ε = p−f/f between a function f and an approximating poly-
nomial p is required as a basic block in implementing correctly rounded elementary functions
for mathematical libraries. However, previous approaches prove to be unsatisfactory in what
concerns safety, automation or computation time.

In this paper, we presented a safe and fast algorithm for bounding the supremum norm of the
approximation errors. We combined and reused several existing techniques and designed a new
algorithm which overcomes previous shortcomings. Our algorithm can handle absolute errors
as well as relative errors.

§CRlibm is distributed under the LGPL and available at http://lipforge.ens-lyon.fr/www/crlibm/

http://lipforge.ens-lyon.fr/www/crlibm/
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Our algorithm uses automatic differentiation techniques and interval arithmetic for a fast and
safe computation of high order derivatives over intervals. This lets us compute automatically
Taylor polynomials with a safely bounded remainder. It will also permit to use Chebyshev ap-
proximation polynomials in the future. This should lead to a significant improvement of the
performances of the algorithm: a speed-up of the computations and the possibility of tackling
error functions defined over larger intervals.

We explained how we can use high order approximation polynomials and root isolation tech-
nique for finding tight enclosure of the zeros of ε′.

The implementation of our algorithm has successfully been used for various examples, in-
cluding an example really used in the code of CRlibm. All examples are safely handled faster
and more accurate than in other related approaches currently available.

Currently, a limitation of our algorithm is that no formal proof is provided. In order to solve
this issue, we must see if it is possible to use one of the techniques for surely isolating the zeros of
a polynomial, in a formal proof checker. Automatic differentiation must also be available in the
proof checker. Finally, arbitrary precision interval arithmetic must be performed with the proof
checker. That point has been solved recently [20] and is no longer an issue.
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