Pré-Publication, Document De Travail Année : 2024

Unified Breakdown Analysis for Byzantine Robust Gossip

Résumé

In decentralized machine learning, different devices communicate in a peer-to-peer manner to collaboratively learn from each other's data. Such approaches are vulnerable to misbehaving (or Byzantine) devices. We introduce F-RG, a general framework for building robust decentralized algorithms with guarantees arising from robust-sum-like aggregation rules F. We then investigate the notion of breakdown point, and show an upper bound on the number of adversaries that decentralized algorithms can tolerate. We introduce a practical robust aggregation rule, coined CSours, such that CSours-RG has a near-optimal breakdown. Other choices of aggregation rules lead to existing algorithms such as ClippedGossip or NNA. We give experimental evidence to validate the effectiveness of CSours-RG and highlight the gap with NNA, in particular against a novel attack tailored to decentralized communications.
Fichier principal
Vignette du fichier
2410.10418v2.pdf (787) Télécharger le fichier
2410.10418v2 (1).pdf (787) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04830823 , version 1 (11-12-2024)
hal-04830823 , version 2 (10-02-2025)

Licence

Identifiants

Citer

Renaud Gaucher, Aymeric Dieuleveut, Hadrien Hendrikx. Unified Breakdown Analysis for Byzantine Robust Gossip. 2024. ⟨hal-04830823v2⟩
38 Consultations
13 Téléchargements

Altmetric

Partager

More