FROM LOCAL TO GLOBAL CONGRUENCES FOR AUTOMORPHIC REPRESENTATIONS - Université de Technologie de Belfort-Montbeliard Access content directly
Preprints, Working Papers, ... Year :

FROM LOCAL TO GLOBAL CONGRUENCES FOR AUTOMORPHIC REPRESENTATIONS

Abstract

Given a irreducible automorphic representation $\Pi$ of a similitude group $G/\mathbb Q$ giving rise to a KHT-Shimura variety, given a local congruence of the local component of $\Pi$ at a fixed place $p$, we justify the existence of a global automorphic representation $\Pi'$ with the same weight and the same level outside $p$ than $\Pi$, such that $\Pi$ and $\Pi'$ are weakly congruent. The arguments rest on the separation of the various contributions coming either from torsion or on the distinct families of automorphic representations, to the modulo $l$ reduction of the cohomology of Harris-Taylor perverse sheaves.
Fichier principal
Vignette du fichier
congruence-torsion.pdf (386.15 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03527658 , version 1 (16-01-2022)
hal-03527658 , version 2 (07-11-2022)

Identifiers

  • HAL Id : hal-03527658 , version 1

Cite

Pascal Boyer. FROM LOCAL TO GLOBAL CONGRUENCES FOR AUTOMORPHIC REPRESENTATIONS. 2022. ⟨hal-03527658v1⟩
10 View
9 Download

Share

Gmail Facebook Twitter LinkedIn More