Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model - Archive ouverte du site Alsace
Article Dans Une Revue Physical Review Letters Année : 2023

Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model

Résumé

We analyze the propagation of excitons in a d-dimensional lattice with power-law hopping ∝1/rα in the presence of dephasing, described by a generalized Haken-Strobl-Reineker model. We show that in the strong dephasing (quantum Zeno) regime the dynamics is described by a classical master equation for an exclusion process with long jumps. In this limit, we analytically compute the spatial distribution, whose shape changes at a critical value of the decay exponent αcr=(d+2)/2. The exciton always diffuses anomalously: a superdiffusive motion is associated to a Lévy stable distribution with long-range algebraic tails for α≤αcr, while for α>αcr the distribution corresponds to a surprising mixed Gaussian profile with long-range algebraic tails, leading to the coexistence of short-range diffusion and long-range Lévy flights. In the many-exciton case, we demonstrate that, starting from a domain-wall exciton profile, algebraic tails appear in the distributions for any α, which affects thermalization: the longer the hopping range, the faster equilibrium is reached. Our results are directly relevant to experiments with cold trapped ions, Rydberg atoms, and supramolecular dye aggregates. They provide a way to realize an exclusion process with long jumps experimentally.
Fichier principal
Vignette du fichier
2212.07744v2.pdf (1.95 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04309356 , version 1 (20-11-2024)

Identifiants

Citer

A. G. Catalano, F. Mattiotti, J. Dubail, D. Hagenmüller, T. Prosen, et al.. Anomalous Diffusion in the Long-Range Haken-Strobl-Reineker Model. Physical Review Letters, 2023, 131 (5), pp.053401. ⟨10.1103/PhysRevLett.131.053401⟩. ⟨hal-04309356⟩
10 Consultations
0 Téléchargements

Altmetric

Partager

More