Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images - WP5: Simulation et modélisation d'images
Article Dans Une Revue Radiotherapy & Oncology Année : 2023

Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images

Résumé

Purpose To investigate the performance of 4 atlas-based (multi-ABAS) and 2 deep learning (DL) solutions for head-and-neck (HN) elective nodes (CTVn) automatic segmentation (AS) on CT images. Material and Methods Bilateral CTVn levels of 69 HN cancer patients were delineated on contrast-enhanced planning CT. Ten and 49 patients were used for atlas library and for training a mono-centric DL model, respectively. The remaining 20 patients were used for testing. Additionally, three commercial multi-ABAS methods and one commercial multi-centric DL solution were investigated. Quantitative evaluation was assessed using volumetric Dice Similarity Coefficient (DSC) and 95-percentile Hausdorff distance (HD95%). Blind evaluation was performed for 3 solutions by 4 physicians. One recorded the time needed for manual corrections. A dosimetric study was finally conducted using automated planning. Results Overall DL solutions had better DSC and HD95% results than multi-ABAS methods. No statistically significant difference was found between the 2 DL solutions. However, the contours provided by multi-centric DL solution were preferred by all physicians and were also faster to correct (1.1 min vs 4.17 min, on average). Manual corrections for multi-ABAS contours took on average 6.52 min Overall, decreased contour accuracy was observed from CTVn2 to CTVn3 and to CTVn4. Using the AS contours in treatment planning resulted in underdosage of the elective target volume. Conclusion Among all methods, the multi-centric DL method showed the highest delineation accuracy and was better rated by experts. Manual corrections remain necessary to avoid elective target underdosage. Finally, AS contours help reducing the workload of manual delineation task.
Fichier principal
Vignette du fichier
RADONC-D-23-00120_R2 auteur.pdf (1.92 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04224817 , version 1 (03-10-2023)

Identifiants

Citer

Madalina Costea, Alexandra Zlate, Anne-Agathe Serre, Séverine Racadot, Thomas Baudier, et al.. Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images. Radiotherapy & Oncology, 2023, 188, pp.109870. ⟨10.1016/j.radonc.2023.109870⟩. ⟨hal-04224817⟩
41 Consultations
123 Téléchargements

Altmetric

Partager

More