Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Emulation of wildland fire spread simulation using deep learning

Abstract : Numerical simulation of wildland fire spread is useful to predict the locations that are likely to burn and to support decision in an operational context, notably for crisis situations and long-term planning. For short-term, the computational time of traditional simulators is too high to be tractable over large zones like a country or part of a country, especially for fire danger mapping. This issue is tackled by emulating the area of the burned surface returned after simulation of a fire igniting anywhere in Corsica island and spreading freely during one hour, with a wide range of possible environmental input conditions. A deep neural network with a hybrid architecture is used to account for two types of inputs: the spatial fields describing the surrounding landscape and the remaining scalar inputs. After training on a large simulation dataset, the network shows a satisfactory approximation error on a complementary test dataset with a MAPE of 32.8%. The convolutional part is pre-computed and the emulator is defined as the remaining part of the network, saving significant computational time. On a 32-core machine, the emulator has a speed-up factor of several thousands compared to the simulator and the overall relationship between its inputs and output is consistent with the expected physical behavior of fire spread. This reduction in computational time allows the computation of one-hour burned area map for the whole island of Corsica in less than a minute, opening new application in short-term fire danger mapping.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

https://hal.inria.fr/hal-03142281
Contributor : Frédéric Allaire <>
Submitted on : Monday, February 15, 2021 - 10:48:30 PM
Last modification on : Monday, March 29, 2021 - 11:58:09 AM

File

paper.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03142281, version 1

Citation

Frederic Allaire, Vivien Mallet, Jean Baptiste Filippi. Emulation of wildland fire spread simulation using deep learning. 2021. ⟨hal-03142281⟩

Share

Metrics

Record views

120

Files downloads

264