Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Strongly Aperiodic SFTs on Generalized Baumslag-Solitar groups

Nathalie Aubrun 1 Nicolás Bitar 1 Sacha Huriot-Tattegrain 2 
1 GALaC - Graphes, Algorithmes et Combinatoire
LISN - Laboratoire Interdisciplinaire des Sciences du Numérique, AAC - Algorithmes, Apprentissage et Calcul
Abstract : We look at constructions of aperiodic SFTs on fundamental groups of graph of groups. In particular, we prove that all generalized Baumslag-Solitar groups (GBS) admit a strongly aperiodic SFT. Our proof is based on first a structural theorem by Whyte and second two constructions of strongly aperiodic SFTs on $\mathbb{F}_n\times \mathbb{Z}$ and $BS(m,n)$ of our own. Our two constructions rely on a path-folding technique that lifts an SFT on $\mathbb{Z}^2$ inside an SFT on $\mathbb{F}_n\times \mathbb{Z}$ or an SFT on the hyperbolic plane inside an SFT on $BS(m,n)$. In the case of $ \mathbb{F}_n\times \mathbb{Z}$ the path folding technique also preserves minimality, so that we get minimal strongly aperiodic SFTs on unimodular GBS.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Nicolas Bitar Connect in order to contact the contributor
Submitted on : Friday, April 22, 2022 - 11:05:56 PM
Last modification on : Friday, August 5, 2022 - 2:58:08 PM


Files produced by the author(s)


  • HAL Id : hal-03649781, version 1


Nathalie Aubrun, Nicolás Bitar, Sacha Huriot-Tattegrain. Strongly Aperiodic SFTs on Generalized Baumslag-Solitar groups. 2022. ⟨hal-03649781⟩



Record views


Files downloads