Communication Dans Un Congrès Année : 2024

Lagrangian Measurements and Physics-Informed Neural Network for Rayleigh-Bénard Flow Reconstruction

Résumé

The aim of this work is to reconstruct the temperature field from Lagrangian measurements in a turbulent Rayleigh-Bénard flow using a Physics Informed Neural Network. First, the spatial concentration of particles in the experimental dataset is examined using a 3D Voronoï analysis with a view to merging the experimental and numerical databases.
Fichier principal
Vignette du fichier
ictam2024_latex_Thermal_v2.pdf (1.39 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04924332 , version 1 (31-01-2025)

Licence

Identifiants

  • HAL Id : hal-04924332 , version 1

Citer

Anne Sergent, Soufiane Mrini, Elian Bernard, Didier Lucor. Lagrangian Measurements and Physics-Informed Neural Network for Rayleigh-Bénard Flow Reconstruction. 26th International Congress of Theoretical and Applied Mechanics (ICTAM2024), Aug 2024, Daegu, South Korea. ⟨hal-04924332⟩
0 Consultations
0 Téléchargements

Partager

More