pyVHR: a Python framework for remote photoplethysmography - Equipe RFAI du Laboratoire Informatique de Tours
Article Dans Une Revue PeerJ Computer Science Année : 2022

pyVHR: a Python framework for remote photoplethysmography

Giuseppe Boccignone
  • Fonction : Auteur
Vittorio Cuculo
  • Fonction : Auteur
Alessandro Amelio
  • Fonction : Auteur
  • PersonId : 1084915
Giuliano Grossi
  • Fonction : Auteur
Raffaella Lanzarotti
  • Fonction : Auteur
Edoardo Mortara
  • Fonction : Auteur

Résumé

Remote photoplethysmography (rPPG) aspires to automatically estimate heart rate (HR) variability from videos in realistic environments. A number of effective methods relying on data-driven, model-based and statistical approaches have emerged in the past two decades. They exhibit increasing ability to estimate the blood volume pulse (BVP) signal upon which BPMs (Beats per Minute) can be estimated. Furthermore, learning-based rPPG methods have been recently proposed. The present pyVHR framework represents a multi-stage pipeline covering the whole process for extracting and analyzing HR fluctuations. It is designed for both theoretical studies and practical applications in contexts where wearable sensors are inconvenient to use. Namely, pyVHR supports either the development, assessment and statistical analysis of novel rPPG methods, either traditional or learning-based, or simply the sound comparison of well-established methods on multiple datasets. It is built up on accelerated Python libraries for video and signal processing as well as equipped with parallel/accelerated ad-hoc procedures paving the way to online processing on a GPU. The whole accelerated process can be safely run in real-time for 30 fps HD videos with an average speedup of around 5. This paper is shaped in the form of a gentle tutorial presentation of the framework.
Fichier principal
Vignette du fichier
peerj-cs-929.pdf (6.6 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03652383 , version 1 (26-04-2022)

Identifiants

Citer

Giuseppe Boccignone, Donatello Conte, Vittorio Cuculo, Alessandro Amelio, Giuliano Grossi, et al.. pyVHR: a Python framework for remote photoplethysmography. PeerJ Computer Science, 2022, ⟨10.7717/peerj-cs.929⟩. ⟨hal-03652383⟩
393 Consultations
327 Téléchargements

Altmetric

Partager

More