High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids

Abstract : Relying on a building block developed by the authors in order to resolve the incompressible Navier-Stokes equation with high order implicit time stepping and dynamic mesh adaptation based on multiresolution analysis with collocated variables, the present contribution investigates the ability to extend such a strategy for scalar transport at relatively large Schmidt numbers using a finer level of refinement compared to the resolution of the hydrody-namic variables, while preserving space adaptation with error control. This building block is a key part of a strategy to construct a low-Mach number code based on a splitting strategy for combustion applications, where several spatial scales are into play. The computational efficiency and accuracy of the proposed strategy is assessed on a well-chosen three-vortex simulation.
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-02343546
Contributeur : Marc Massot <>
Soumis le : samedi 2 novembre 2019 - 18:41:50
Dernière modification le : lundi 13 janvier 2020 - 01:15:15

Fichier

JCAM_InPress_NGuessan_et_al201...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Marc-Arthur N'Guessan, Marc Massot, Laurent Series, Christian Tenaud. High order time integration and mesh adaptation with error control for incompressible Navier-Stokes and scalar transport resolution on dual grids. Journal of Computational and Applied Mathematics, Elsevier, In press, ⟨10.1016/j.cam.2019.112542⟩. ⟨hal-02343546⟩

Partager

Métriques

Consultations de la notice

76

Téléchargements de fichiers

83