- Home

[...]

[...]

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

The optical spectra of two-dimensional (2D) periodic systems provide a challenge for time-dependent density-functional theory (TDDFT) because of the large excitonic effects in these materials. In this work we explore how accurately these spectra can be described within a pure Kohn-Sham time-dependent density-functional framework, i.e., a framework in which no theory beyond Kohn-Sham density-functional theory, such as $GW$, is required to correct the Kohn-Sham gap. To achieve this goal we adapted a recent approach we developed for the optical spectra of 3D systems [Cavo, Berger, Romaniello, Phys. Rev. B 101, 115109 (2020)] to those of 2D systems. Our approach relies on the link between the exchange-correlation kernel of TDDFT and the derivative discontinuity of ground-state density-functional theory, which guarantees a correct quasi-particle gap, and on a generalization of the polarization functional [Berger, Phys. Rev. Lett., 115, 137402 (2015)], which describes the excitonic effects. We applied our approach to two prototypical 2D monolayers, $h$-BN and MoS$_2$. We find that our protocol gives a qualitative good description of the optical spectrum of $h$-BN, whereas improvements are needed for MoS$_2$ to describe the intensity of the excitonic peaks.

Using a set of oscillator strengths and excited-state dipole moments of near full configuration interaction (FCI) quality determined for small compounds, we benchmark the performances of several single-reference wave function methods (CC2, CCSD, CC3, CCSDT, ADC(2), and ADC(3/2)) and time-dependent density-functional theory (TD-DFT) with various functionals (B3LYP, PBE0, M06-2X, CAM-B3LYP, and $\omega$B97X-D). We consider the impact of various gauges (length, velocity, and mixed) and formalisms: equation of motion (EOM) \emph{vs} linear response (LR), relaxed \emph{vs} unrelaxed orbitals, etc. Beyond the expected accuracy improvements and a neat decrease of formalism sensitivy when using higher-order wave function methods, the present contribution shows that, for both ADC(2) and CC2, the choice of gauge impacts more significantly the magnitude of the oscillator strengths than the choice of formalism, and that CCSD yields a notable improvement on this transition property as compared to CC2. For the excited-state dipole moments, switching on orbital relaxation appreciably improves the accuracy of both ADC(2) and CC2, but has a rather small effect at the CCSD level. Going from ground to excited states, the typical errors on dipole moments for a given method tend to roughly triple. Interestingly, the ADC(3/2) oscillator strengths and dipoles are significantly more accurate than their ADC(2) counterparts, whereas the two models do deliver rather similar absolute errors for transition energies. Concerning TD-DFT, one finds: i) a rather negligible impact of the gauge on oscillator strengths for all tested functionals (except for M06-2X); ii) deviations of ca.~0.10 D on ground-state dipoles for all functionals; iii) the better overall performance of CAM-B3LYP for the two considered excited-state properties.

[...]

Aiming at completing the sets of FCI-quality transition energies that we recently developed (

This work presents a series of highly-accurate excited-state properties obtained using high-order coupled-cluster (CC) calculations performed with a series of diffuse containing basis sets, as well as extensive comparisons with experimental values. Indeed, we have computed both the main ground-to-excited transition property, the oscillator strength, as well as the ground- and excited-state dipole moments, considering {thirteen} small molecules (hydridoboron, hydrogen chloride, water, hydrogen sulfide, boron fluoride, carbon monoxide, dinitrogen, ethylene, formaldehyde, thioformaldehyde, nitroxyl, {fluorocarbene}, and silylidene). We systematically include corrections up to the quintuple (CCSDTQP) in the CC expansion and extrapolate to the complete basis set limit. When comparisons with experimental measurements are possible, that is, when a number of consistent experimental data can be found, theory typically provides values falling within the experimental error bar for the excited-state properties. Besides completing our previous studies focussed on transition energies (\textit{J.~Chem.~Theory Comput.} \textbf{14} (2018) 4360--4379, \textit{ibid.}~\textbf{15} (2019) 1939--1956, \textit{ibid.}~\textbf{16} (2020) 1711--1741, and \textit{ibid.}~\textbf{16} (2020) 3720--3736), this work also provides ultra-accurate dipoles and oscillator strengths that could be employed for future theoretical benchmarks.

[...]

Context. Line shapes of the magnesium resonance lines in white dwarf spectra are determined by the properties of magnesium atoms and the structure of the white dwarf atmosphere. Through their blanketing effect, these lines have a dominant influence on the model structure and thus on the determination from the spectra of other physical parameters that describe the stellar atmosphere and elemental abundances.Aims. In continuation of previous work on Mg+He lines in the UV, we present theoretical profiles of the resonance line of neutral Mg perturbed by He at the extreme density conditions found in the cool largely transparent atmosphere of DZ white dwarfs.Methods. We accurately determined the broadening of Mg by He in a unified theory of collisional line profiles using ab initio calculations of MgHe potential energies and transition matrix elements among the singlet electronic states that are involved for the observable spectral lines.Results. We computed the shapes and line parameters of the Mg lines and studied their dependence on helium densities and temperatures. We present results over the full range of temperatures from 4000 to 12 000 K needed for input to stellar spectra models. Atmosphere models were constructed for a range of effective temperatures and surface gravities typical for cool DZ white dwarfs. We present synthetic spectra tracing the behavior of the Mg resonance line profiles under the low temperatures and high gas pressures prevalent in these atmospheres.Conclusions. The determination of accurate opacity data of magnesium resonance lines together with an improved atmosphere model code lead to a good fit of cool DZ white dwarf stars. The broadening of spectral lines by helium needs to be understood to accurately determine the H/He and Mg/He abundance ratio in DZ white dwarf atmospheres. We emphasize that no free potential parameters or ad hoc adjustments were used to calculate the line profiles.

The Bethe-Salpeter equation (BSE) formalism is a computationally affordable method for the calculation of accurate optical excitation energies in molecular systems. Similar to the ubiquitous adiabatic approximation of time-dependent density-functional theory, the static approximation, which substitutes a dynamical (\ie, frequency-dependent) kernel by its static limit, is usually enforced in most implementations of the BSE formalism. Here, going beyond the static approximation, we compute the dynamical correction of the electron-hole screening for molecular excitation energies thanks to a renormalized first-order perturbative correction to the static BSE excitation energies. The present dynamical correction goes beyond the plasmon-pole approximation as the dynamical screening of the Coulomb interaction is computed exactly within the random-phase approximation. Our calculations are benchmarked against high-level (coupled-cluster) calculations, allowing to assess the clear improvement brought by the dynamical correction for both singlet and triplet optical transitions.

Following the recent work of Eriksen et al. [arXiv:2008.02678], we report the performance of the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) method on the non-relativistic frozen-core correlation energy of the benzene molecule in the cc-pVDZ basis. Following our usual protocol, we obtain a correlation energy of $-863.4(5)$ m$E_h$ which agrees with the theoretical estimate of $-863$ m$E_h$ proposed by Eriksen et al. using an extensive array of highly-accurate new electronic structure methods.

3115ag Automatic Keywords Argon Cooperative effect Corrélation et relativité Clay mineral Corrélation électronique Boys Coupled Cluster Diatomic molecules BIOMOLECULAR HOMOCHIRALITY Relativistic quantum chemistry Molecular properties Ground states Single-core optimization Time-dependent density-functional theory Pesticides Metabolites Clustering Molecular modeling Environmental fate Partial least squares Parallel speedup Correlation and relativity Electron electric moment Biodegradation Aimantation AB-INITIO CALCULATION Calcul ab initio Chimie quantique ALGORITHM Cluster coupling Circular dichroism Ab initio calculation Hyperfine structure Wave functions Azide Anion Contact electron density 3115bw Relativistic corrections 3115am Parity violation Car-Parrinello molecular dynamics Petascale Benchmarks Valence bond Large systems Basis sets Perturbation theory Electron correlation Excited states 3115vn Contact density Anderson mechanism Configuration interactions Atrazine-cations complexes 3115ae Range separation Chemical Physics Density functional theory 3115vj AB-INITIO Acrolein Chiral oxorhenium Atomic processes Coupled cluster theory Quantum Monte Carlo CP Violation 3315Fm CHEMICAL-SHIFTS Coupled cluster Atom Abiotic degradation Charge conjugation symmetry Configuration interaction CLUSTERS Conditions aux limites périodiques Chiral transition metal complexes Atomic and molecular structure and dynamics Spin-orbit interactions Chiral halogenomethanes CIPSI AROMATIC-MOLECULES Quantum Chemistry Coupled cluster calculations Analytic gradient Brown dwarfs Argile Beyond Standard Model Configuration Interaction Carbon Nanotubes Pesticide Béryllium 3470+e 3115aj Dispersion coefficients Atrazine Chemical-Bonds Chemical concepts CP violation Polarizabilities COMPUTATION BENZENE MOLECULE Atomic data Line formation