Source-to-Source Automatic Differentiation of OpenMP Parallel Loops - Joint Laboratory on Extreme Scale Computing
Article Dans Une Revue ACM Transactions on Mathematical Software Année : 2021

Source-to-Source Automatic Differentiation of OpenMP Parallel Loops

Résumé

This paper presents our work toward correct and efficient automatic differentiation of OpenMP parallel worksharing loops in forward and reverse mode. Automatic differentiation is a method to obtain gradients of numerical programs, which are crucial in optimization, uncertainty quantification, and machine learning. The computational cost to compute gradients is a common bottleneck in practice. For applications that are parallelized for multicore CPUs or GPUs using OpenMP, one also wishes to compute the gradients in parallel. We propose a framework to reason about the correctness of the generated derivative code, from which we justify our OpenMP extension to the differentiation model. We implement this model in the automatic differentiation tool Tapenade and present test cases that are differentiated following our extended differentiation procedure. Performance of the generated derivative programs in forward and reverse mode is better than sequential, although our reverse mode often scales worse than the input programs.
Fichier principal
Vignette du fichier
2111.01861.pdf (851.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03429677 , version 1 (15-11-2021)

Identifiants

Citer

Jan Hückelheim, Laurent Hascoët. Source-to-Source Automatic Differentiation of OpenMP Parallel Loops. ACM Transactions on Mathematical Software, 2021, 48 (1), ⟨10.1145/3472796⟩. ⟨hal-03429677⟩
102 Consultations
104 Téléchargements

Altmetric

Partager

More