Skip to Main content Skip to Navigation
New interface
Conference papers

Estimation du centre et du rayon d'une hypersphère à l'aide d'une loi a priori de Von Mises-Fisher et d'un algorithme EM

Abstract : This article introduces an extension of an EM algorithm (Expectation Maximization) published recently by the authors allowing to estimate jointly the center and the radius of an hypersphere as well as the statistical model hyperparameters acounting that the observations are located on a part of the hypersphere. The proposed method relies on the introduction of latent variables having a von Mises Fisher prior. This statistical model allows to express the complete data likelihood, which expectancy conditionned to the observed data has a known distribution resulting in a simple and efficient EM algorithm. The performances of this estimation algorithm are assessed through simulations performed in a bidimensinal case with promising results
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03693945
Contributor : Julien Lesouple Connect in order to contact the contributor
Submitted on : Monday, June 20, 2022 - 3:07:35 PM
Last modification on : Tuesday, July 12, 2022 - 12:18:52 PM

File

GRETSI_final.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03693945, version 2

Citation

Julien Lesouple, Barbara Pilastre, Yoann Altmann, Jean-Yves Tourneret. Estimation du centre et du rayon d'une hypersphère à l'aide d'une loi a priori de Von Mises-Fisher et d'un algorithme EM. XXVIIIème Colloque Francophone de Traitement du Signal et des Images (GRETSI 2022), Sep 2022, Nancy, France. ⟨hal-03693945v2⟩

Share

Metrics

Record views

74

Files downloads

11