Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Gaussian process metamodeling of functional-input code for coastal flood hazard assessment

Abstract : This paper investigates the construction of a metamodel for coastal flooding early warning at the peninsula of Gâvres, France. The code under study is an hydrodynamic model which receives time-varying maritime conditions as inputs. We concentrate on Gaussian pocess metamodels to emulate the behavior of the code. To model the inputs we make a projection of them onto a space of lower dimension. This setting gives rise to a model selection methodology which we use to calibrate four characteristics of our functional-input metamodel: (i) the family of basis functions to project the inputs; (ii) the projection dimension; (iii) the distance to measure similarity between functional input points; and (iv) the set of functional predictors to keep active. The proposed methodology seeks to optimize these parameters for metamodel predictability, at an affordable computational cost. A comparison to a dimensionality reduction approach based on the projection error of the input functions only showed that the latter may lead to unnecessarily large projection dimensions. We also assessed the adaptability of our methodology to changes in the number of training and validation points. The methodology proved its robustness by finding the optimal solution for most of the instances, while being computationally efficient.
Liste complète des métadonnées

Littérature citée [82 références]  Voir  Masquer  Télécharger
Contributeur : José Betancourt <>
Soumis le : lundi 25 novembre 2019 - 22:05:29
Dernière modification le : vendredi 19 juin 2020 - 22:15:22
Document(s) archivé(s) le : mercredi 26 février 2020 - 19:33:35



José Betancourt, François Bachoc, Thierry Klein, Déborah Idier, Rodrigo Pedreros, et al.. Gaussian process metamodeling of functional-input code for coastal flood hazard assessment. Reliability Engineering and System Safety, Elsevier, 2020, 198, ⟨10.1016/j.ress.2020.106870⟩. ⟨hal-01998724v2⟩



Consultations de la notice


Téléchargements de fichiers