Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Functional Weibull-based models of steel fracture toughness for structural risk analysis: estimation and selection

Abstract : A key input component of numerous reliability studies of industrial components or structures, steel fracture toughness is usually considered as a random process because of its natural variability. Moreover, toughness presents a high sensitivity to temperature which also plays a fundamental role, as an environmental forcing, in such studies. Therefore a particular attention has to be paid to the assessment of its stochastic functional modelling, by means of a statistical analysis of indirect measures that suffer from heterogeneity and censoring. While a Weibull shape arising from statistical physics is recognized as the most relevant approach to represent local variability, the selection of best functional parameters (function of temperature) requires an accurate estimation and testing methodology. Its development is motivated by several limitations of the common statistical practices in the field of fracture toughness, which are related to data treatment and model selection. Illustrated by the exploration of a database feed by several European manufacturers or exploiters, this article establishes the main steps of such a methodology, implemented in a dedicated software tool.
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-02388635
Contributeur : Amplexor Amplexor <>
Soumis le : lundi 2 décembre 2019 - 09:10:01
Dernière modification le : mardi 28 avril 2020 - 11:28:14
Document(s) archivé(s) le : mardi 3 mars 2020 - 22:14:53

Fichier

201600002548.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nadia Pérot, Nicolas Bousquet. Functional Weibull-based models of steel fracture toughness for structural risk analysis: estimation and selection. Reliability Engineering & System Safety, 2017, 165, pp.355-367. ⟨10.1016/j.ress.2017.04.024⟩. ⟨cea-02388635⟩

Partager

Métriques

Consultations de la notice

102

Téléchargements de fichiers

181