Improvement of code behavior in a design of experiments by metamodeling

Abstract : It is now common practice in nuclear engineering to base extensive studies on numerical computer models. These studies require to run computer codes in potentially thousands of numerical configurations and without expert individual controls on the computational and physical aspects of each simulations.In this paper, we compare different statistical metamodeling techniques and show how metamodels can help to improve the global behaviour of codes in these extensive studies. We consider the metamodeling of the Germinal thermalmechanical code by Kriging, kernel regression and neural networks. Kriging provides the most accurate predictions while neural networks yield the fastest metamodel functions. All three metamodels can conveniently detect strong computation failures. It is however significantly more challenging to detect code instabilities, that is groups of computations that are all valid, but numerically inconsistent with one another. For code instability detection, we find that Kriging provides the most useful tools.
Keywords : Metamodeling
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-02382795
Contributeur : Amplexor Amplexor <>
Soumis le : mercredi 27 novembre 2019 - 13:09:49
Dernière modification le : jeudi 23 janvier 2020 - 18:22:04

Fichier

201500004022.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

François Bachoc, Karim Ammar, Jean-Marc Martinez. Improvement of code behavior in a design of experiments by metamodeling. Nuclear Science and Engineering, Academic Press, 2016, 183 (3), pp.387-406. ⟨10.13182/NSE15-108⟩. ⟨cea-02382795⟩

Partager

Métriques

Consultations de la notice

68

Téléchargements de fichiers

54