The potential role of spherocrystals in the detoxification of essential trace metals following exposure to Cu and Zn in the fighting conch Strombus (Lobatus) pugilis
Abstract
Crypt cells—one of the three cell types composing Strombidae digestive tubules—are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.
Origin | Files produced by the author(s) |
---|
Loading...