Skip to Main content Skip to Navigation

Welcome to the Sustainable Environment Group collection

The 'Sustainable Environment' research group focuses on the dissemination and impact of metals and emerging pollutants (nanomaterials, pharmaceutical compounds, etc.) on the chronic degradation of soil and water in relation to their use, as well as than on the valorization (agricultural recycling, critical metals, etc.) and the treatment of waste and wastewater. Whatever the system studied (soil, water, biota, materials), we share a common goal of a multi-scale systemic approach to understanding bio-physico-chemical processes and reaction mechanisms controlling the emission, transfer, accumulation, treatment and impact of contaminants and organic matter in our Environment.

Latest submissions in HAL !

[hal-02890694] Effects of increasing concentrations of unamended and gypsum modified bauxite residues on soil microbial community functions and structure – A mesocosm study

(5/7/21)  
Bauxite residues (BR), commonly named red muds, are the saline-sodic waste produced during the extraction of alumina from bauxite. In this study, four kinds of BR were mixed at increasing concentrations with two soils in a mesososm experiment. Unamended BR from Provence (PRO) and Guinea (GUI) bauxite were selected, and Modified Bauxite Residues from PRO and GUI (MBR-PRO and MBR-GUI) were obtained by gypsum application and repeated leaching, in order to reduce their pH, electrical conductivity (EC) and exchangeable sodium percentage (ESP). Several indicators of microbial community functions and structure (growth of culturable bacteria; enzymatic activities; C-sourced substrates degradation (Biolog®); bacteria and fungi PCR-RFLP fingerprints) were measured after 35 days of incubation. Results showed that PRO residue had stronger negative effects than GUI on all the tested indicators. Residues modified by gypsum addition (MBR-PRO, MBR-GUI) were equally or sometimes less harmful compared to unamended residues. Microbial activities (bacterial growth and enzyme activities) were more inhibited than the diversity of microbial functions (Biolog®), and the structure of bacterial and fungal communities was not affected by increasing concentrations of bauxite residues. EC and ESP were the main factors explaining the inhibition of microbial activities, although the origin of bauxite residue is of great importance too.

[hal-03196833] The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach

(4/15/21)  

[hal-03186149] Integrated discriminant biomarker analysis as a tool to reveal the effects of metallic nanoparticles on the freshwater mussel Dreissena polymorpha following mesocosm exposures

(4/1/21)  

 

 

Contact

Catherine Beaussier
Tél. (+33) 4 95 04 41 43
catherine.beaussier@osupytheas.fr

Archive créée et administrée sur la plateforme HAL du CCSD
 

Legal aspects : Contributor obligations


Dépôt de fichier : que faire en fonction de la version que vous déposez

Sherpa/Romeo

 

Domain

 

 

Evolution of the submissions

 

 

 

 

 

INTERNATIONAL COLLABORATIONS