Communication Dans Un Congrès Année : 2024

Patch normalizing flow regularization for hyperspectral pansharpening

Résumé

This paper presents an unsupervised neural network-based framework for fusing hyperspectral (HS) and multispectral (MS) images, addressing their inherent resolution trade-offs. Unlike supervised HS-MS fusion methods that require large training datasets, our approach is model-based and fully unsupervised. It is based on Principal Component Analysis (PCA) for spectral subspace identification and on an innovative Patch Normalizing Flow (Patch-NF) for spatial regularization. Experiments show that the proposed method offers a nice trade-off in terms of performance and computation time, when compared to alternative unsupervised baselines from the literature.


Fichier principal
Vignette du fichier
17526-Whispers_PatchNF_final.pdf (195.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04887550 , version 1 (23-01-2025)

Identifiants

  • HAL Id : hal-04887550 , version 1

Citer

Afonso Serrão Caroço De Carvalho, Thomas Oberlin. Patch normalizing flow regularization for hyperspectral pansharpening. 14th Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), Dec 2024, Helsinki, Finland. ⟨hal-04887550⟩
0 Consultations
0 Téléchargements

Partager

More